March 17, 2002 @ NBI2002

Secondary beam monitoring at K2K experiment

Tsuyoshi NAKAYA (Kyoto University)

For K2K collaboration & KEK-PS beam channel group

- 1. Introduction (K2K beam)
- 2. Pion Monitor
- 3. Muon Monitor
- 4. Front n detectors (Neutrino monitor)
- 5. Summary

Secondary Beam

$$p + Al \otimes p^{+} \otimes m^{+} + n_{m} \qquad 99\%$$

$$\rightarrow e^{+} + n_{m} + n_{e} \qquad \sim 1\%$$

$$\rightarrow K^{+} \otimes m^{+} + n_{m}$$

- Monitor them intently
- Potentially we can get information (currently under study)

Monitoring Items at K2K

Goal:

- Guarantee the neutrino beam pointing to the far detector (Super Kamiokande) at 250km away within 1 mrad accuracy.
- Expect the neutrino flux and the spectrum at Super Kamiokande to study the neutrino oscillation phenomena.
- **Direction** (spill by spill online, day by day)
 - \mathbf{m} , \mathbf{n}
- **Profile** (spill by spill online, day by day)
 - \mathbf{m} , \mathbf{n}
- **Spectrum** (including the stability)
 - p, n (\rightarrow Require the study of ν interaction.)
- Flux (including the stability)
 - $n \rightarrow Require the study of v interaction.$

Neutrino energy spectrum and the profile

2. Pion Monitor

Gas Cherenkov detector: (insensitive to primary protons)

Measure momentum and angular distribution of pions,

 $N(p_{\pi}, \theta_{\pi})$ just after the target/horns system.

- $N(p_p, q_p)$:
 - with the simple two decay kinematics
 - with the well-defined decay volume geometry
- Predict the neutrino spectrum shape at both near and far sites and the so-called "far/near ratio".
 - Because of the severe 12 GeV primary proton background, the cherenkov threshold was set to 2GeV for π (~1GeV for ν).

The error on the number of events estimate = +5.7 -7.4 % 10

3. Muon monitor

Monitor the profile center of muons spill by spill.

Each data point has a better than 0.1 mrad accuracy

- Sensitive to the muons w/ \geq 5.5 GeV/c (\sim Ev>2.5 GeV).
- Sensitive to the secondary pions direction, and also to the targeting efficiency (by charge information from the detectors).

4. Front n Detectors (Neutrino Monitor)

At KEK: 1kt Water Cherenkov, Scinti. fiber tracker, Lead Glass, Muon Range Detector (MRD)

n detectors

- 1KT Water Cherenkov Detector
 - Event Rate, Spectrum, v interaction, the stability
- MRD (Muon Range Detector)
 - Direction of v, Stability of Event Rate and Spectrum
- SciFi (Scintillation Fiber/Water Target Sandwich Detector)
 - Event Rate, Spectrum, v interaction
- Lead Glass
 - ve measurement
- (Full Active Scintillator Tracker) 2003
 - Spectrum, v interaction

1kt Water Cherenkov detector

Beam structure (9 bunches in one spill)

Neutrino Energy Spectrum

(assuming Quasi-Elastic interaction)

$$E_{\mathbf{n}} = \frac{m_N E_{\mathbf{m}} - m_{\mathbf{m}}^2 / 2}{m_N - E_{\mathbf{m}} + p_{\mathbf{m}} \cos \boldsymbol{q}_{\mathbf{m}}}$$

MRD Events

Run 1244 Spill 20799 TRGID 1 99 6 22 17 48 56 0 Nvtx 0

Event Rate stability

Fe event / 5<u>1</u>10¹²ppp 90.0 90.0 ╶╌╫╒╬┩┡╫╫╬┼╴┼╶╫╌╬┼╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬ 0.04 0.03 0.02 0.01 99Jun 99Nov 00Jan 00Feb 00Mar 00May 00Jun 01Jan 01Feb 01Mar 01Apr 01May 01Jun 01Jul integrated day (1 data point / 2 days)

n spectrum stability

SciFi Eventsiun 2279 Spill 18568 TRGID 1

n interaction study

QE Enriched Sample

n_e measurement (under analysis)

n_m from K decay contribution (under analysis)

Look for a very high energy m

Full Active Sintillator Tracker

•K2K will install another brand new near detector in summer 2003 to measure low energy neutrino flux more precisely and to study neutrino interaction in detail.

L=250km, Dm² =
$$3 \times 10^{-3}$$

 $Ev \sim 0.6 GeV$

Summary

- K2K beam has been operated stably for more than two years.
- Pion Monitor successfully estimate the "Far/Near Ratio".
- Muon Monitor has been watching the direction of muon for a long run period, and guarantee the direction of ν beam and the target efficiency.
- Neutrino Detectors measure:
 - the stability of the ν beam
 - the direction of the v beam
 - the Event Rate (Integrated flux)
 - the Spectrum information^(*)
 - the v interaction information^(*)

(*): for a long baseline analysis (not for the absolute measurement)

Supplement

