NuMI Low Energy Target

Valeri Garkusha

IHEP, Protvino

Target parameters and event rates per kton-year for NuMI beams:

Beam	$^{ m LE}$	ME	HE
L, m	0.94	1.20	1.60
Z, m	-0.34	-1.40	-4.00
$\langle \rho \rangle$, g/cm ³	1.74	1.54	1.16
$\nu_{\mu} { m CC}$	496	1424	2936

Energy deposition (kW) in different elements of the LE target:

Graphite segments	2.959
Cooling pipes and water	0.415
Aluminum casing	0.148
Total	3.523

Main parameters of the LE target cooling system:

Velocity of a cooling water, m/s	2	3	4
Heat transfer coefficient, kW/m ² /K	10	14	18
Pressure drop, atm	0.32	0.68	1.2
Water flow rate, l/min	2.7	4.1	5.5
Water temperature rise, °C	18	12	8.8

0

For the target segments with the highest energy deposition density ($\sim 0.095 \text{ GeV/cm}^3/p$):

Temperature before beam spill	58.2°C
Temperature rise	272°C
Temperature after beam spill	$330^{\circ}\mathrm{C}$

ZXF-5Q (1.81 g/cm³): Compressive Strength 210 MPa Tensile Strength 95 MPa

15

Time, μ s

The high cycle fatigue endurance limit of graphite is 0.5–0.6 The safety factor is $\frac{(0.5-0.6)\times95}{23.5}\sim2.2$

 $\tau_{p}^{\overline{10}}$

Coeff. of Thermal Expansion:

ZXF-5Q graphite: 8.1×10^{-6} , 1/K

CT852 steel: 10.2×10^{-6} , 1/K

Soldering of graphite segments and steel cooling pipes:

- \bullet soldering surfaces of graphite segments are coated with the 3–4 μm layer of nickel;
- a nickel layer, as well as cooling pipes are coated with ~0.1 mm layer of a soft solder with the melting temperature of 300°C (85%Sn+Zn+Ag);
- graphite segments are forced against the cooling pipes and heated to the temperature above 300°C.

Measured linear displacements of target segments in the horizontal plane for the 20 segments LE target prototype (with 3.2 mm wide segments!):

Joining of different materials in some parts of the LE target design:

1) Bimetallic transition from the aluminum to the stainless steel (a) and welding of the metal-ceramic adapter to the target casing (b).

2) Welding of different parts in a water cooling system.

The prototype of the ME target with all main features of the full-size design was constructed in IHEP and tested at the 120 GeV Main Injector beam in 1999. The goals of prototype test included:

- to check if accumulated radiation dose will cause some changes in material properties, and as a result, early failures of target segments;
- find out if the target material withstand the stress induced by the high intensity beam and test that off-axis beam does not destroy the target;
- test charge-read-out (Budal) monitoring of the target in vacuum and in helium atmosphere for insulation coated and uncoated target segments.

Scaling from the full-size ME target to prototype:

ME Target	Full-size	Prototype
Beam energy, GeV	120	120
Number of protons per spill	$4 \cdot 10^{13}$	5.10^{12}
Beam size $\sigma_x \times \sigma_y$, mm ²	0.7×1.4	0.3×0.3
Segment width, mm	3.2	1.78
Segment length, mm	20	8.0
Maximum energy deposition		
density, kJ/cm ³	0.70	0.86
Temperature at the beam axis, °C:		
T_{max}	508	467
ΔT	280	394
T_{min}	228	73
S_{eq} at the center of segment, MPa	25	27

1. Radiation damage of graphite

The expected dose for the central region of NuMI target is 5×10^{25} p/m² (~2 dpa)

The total dose accumulated in prototype test was 0.23×10^{25} p/m² (~ 0.08 dpa)

Low dose effects:

- an increase of elastic modulus E by substantial factor depending upon the material (30-40% at the 0.1 dpa for the H-451 graphite);
- an increase of tensile strength accordingly to $\sigma \geq \sigma_0 \sqrt{E/E_0}$.

2. Stresses in the prototype

The expected number of proton pulses for NuMI target is 10^7 per year Estimated number of proton pulses in prototype test was $\leq 3 \times 10^5$

High intensity (10^{13} ppp) beam scans (0.1 mm steps horizontally):

$\sigma_x \times \sigma_y, \text{mm}^2$	0.31×0.35	0.27×0.23	0.16×0.21
dE/dV, kJ/cm ³	1.44	2.42	4.27
ΔT at the beam axis, °C	593	896	1420

For the smallest beam spot size at $x \simeq 0.6$ mm:

 $(S_{eq})_{max} = 160 \text{ MPa}$ at the lateral side of target segment (all-axis extension) is noticeable larger than the tensile strength of ZXF-5Q graphite (95 Mpa).

No visible changes in the target segments integrity!?

- an increase with a temperature of the tensile strength of graphite (125 MPa at 600°C vs 95 MPa at 20°C);
- an inadequate accuracy of energy deposition and stress calculations giving results which exceed the actual values;
- a visual inspection was not enough to detect invisible failures or microcracks in target segments.

3. Charge-read-out monitoring of a primary beam in the target

