CNGS target optimization: first simulation results

L. Bruno, A. Ferrari, S. Péraire, P. Sala, E. Weisse

- Target heating
- Particle yields
- Neutrino event rates at GS
- Beam size
- Target size and configuration
- Target material

All simulations done with the latest version of FLUKA

FIRST ITEM : WHICH BEAM SIZE ? $\sigma = 0.26$ or $\sigma = 0.53$ mm ?

Standard CNGS target :

13 Graphite bars, Ø 4 mm, total length 2000. mm , Carbon I. 1261 mm

Result : particle production and beam losses are identical Peak energy deposition is lower by a factor 3

Varying target diameter, spacing, density : yield normalized to standard one Beam size has no effect on particle yield (if fully contained)

8

mm

CNGS cible, diameter=3mm vs std

To gain in temperature: broader beam or lighter material

SUMMARY

Target diameter : $\leq 5 \text{ mm}$, unless needed to gain intensity

(first two rods can safely go to 5 mm)

Beam σ : As large as possible, effects of non-gaussian tails, imperfect alignment, beam instability, to be carefully estimated

Target structure : present segmentation OK for standard graphite (broad maximum)

Target density : Lighter (1.1) graphite of 97 % equivalent length gives Lower (85 %) energy deposition

1.7 % less yield

Supports to be investigated

Target material ...new ideas..

Possibility of multiple targets

Very long runs (background is at the % level with respect to signal)

Double target, 4 mm diameter, at 20 mm inter-axis distance

Event rate at GS (Evt/kTon/10¹⁹ pot v_{μ} within 120 m, v_{e} within 400m)

	STD	2 TG	Error	Δ (%)
νμ	570	569	0.28%	-0.18
ve	4.26	4.45	2.40%	4.46
a ve	0.3	0.31	3.70%	3.33
α νμ	11.2	11.5	2.40%	2.68