

A short review of hadroproduction data for neutrino beams

M. Bonesini INFN Milano NBI 2002-Cern

M. Bonesini -NBI 02 Cern

Talk outline

- High energy conventional neutrino beams
- Available datasets for neutrino beams calculations
- low, medium and high-energy data
- an example: the NA56/SPY experiment
- Existing parametrizations of secondary particle yields at high energy:
 - Atherton, Malensek
- > A new parametrization of high energy data: the BMPT parametrization
- the parametrization of cross sections
- a simple simulation of neutrino beamlines
- a check with Charm II data
- applications to WANF, CNGS, NuMI
- > What is next :
- parametrization of secondary particle yields at low energy
- HARP, E907
- Conclusions

High energy conventional neutrino beams

 Wide band v beams at the SPS
 Optics + decay kinematics known WANF

 $p \cong 75 \text{GeV/c}, \quad p_T/p \leq 8 \text{mrad}$

CNGS (ref beam)

$p \cong 40 \text{ GeV/c}; \quad p_T/p \le 10 \text{ mrad}$

about 50% of v_µ from secondaries below 60 GeV/c -> data needed
 ➤ Minority components -> needs better knowledge of secondary production in target

Available datasets for neutrino beams calculations

- Mainly from old, non dedicated experiments to study hadroproduction (sixties)
- usually single-arm spectrometer experiments
- low statistics, high systematics
- low energy (p_{inc}<30 GeV/c)
- sometimes data are not on nuclear targets but on protons (" nuclear effects")
- I will show a useful selection

1. Low energy data

> J. Allaby et al., CERN-70-12

- ✤ p-nuclei (B₄C, Be, Al, Cu, Pb) and p-p collisions at 19.2 GeV/c
- Single arm spectrometer
- > G. Eichten et al., Nucl. Phys. B44(1972) 333
- * π ,K prod in p-nuclei collisions (Be, B₄C,Al, Cu, Pb targets) at 24 GeV/c
- single arm magnetic CERN-Rome spectrometer
- > All datasets useful, but suffer from low statistics and high systematics (15 % on cross sections)

2.Medium energy data

- > Barton et al., Phys. ReVD27(1983),2580
- Study of inclusive production of π, K, p, pbar in 100 GeV/c π⁺,K⁺,p collisions with C,Al,Cu,Ag,Pb targets
- Single arm M6E Fermilab spectrometer
- > Skubic et al., Phys. ReV. D18 (1978), 3115
- Strange particle production in 300 GeV/c p collisions with Be,Cu,Pb

3. High energy data by 400-450 GeV/c protons on Beryllium > H.W. Atherton et al. (NA20), CERN 80-07, 1980 > p = 60, 120, 200, 300 GeV/c $> p_{t} = 0,500 \text{ MeV/c}$ > target plate length = 40, 100, 300, 500 mm ➢ G. Ambrosini et al. (NA56/SPY), Eur. Phys. J. C10 (1999) 605> p = 7, 10, 15, 20, 30, 40, 67.5, 135 GeV/c (at $p_t = 0$) $> p_{+} = 0, \pm 75, \pm 150, \pm 225, \pm 337, \pm 450, \pm 600 \text{ MeV/c}$ (for p $= \pm 15, \pm 40 \text{ GeV}$ \succ target plate length = 100, 200, 300 mm > WANF "T9-like" target (3 rods 10 cm long, 3 mm thick)

An example: the Na56/SPY experiment

- Measure π, kaon fluxes by 450 GeV/c p on Be (5% precision) -> knowledge of neutrino spectra
- Measure k/π ratio (3% precision) -> knowledge ν_e/ν_µ ratio
- Equipped H6 beamline from NA52 experiment in North Area
- Primary p flux measured by SEM
- Different Be targets (shapes, L)
- PID by TOF counters (low momentum) and Cerenkov (high momenta)

The NA56/SPY experiment

> Critical points for such an experiment

- beamline simulation (spectrometer acceptance) (5 10
 % precision)
- other systematic errors
- Particle misidentification (< 1%)
- Subtraction of long lifetime particles decaying outside the target $(K_{s}^{0} \rightarrow \pi\pi, ...) (< 2\%)$
- Beam momentum determination and K lifetime->uncertainty on K decay correction (1 %)
- Protons on target (2 %)

Pid in the NA56/SPY experiment

 TOF1-TOF5 scintillator hodoscopes (resolution 70-100 ps)
 C0-C1(N2)/C2(H2) threshold Cerenkov counters π/K up to/above 20 GeV/c
 CEDAR differential Cerenkov counter (He) flags π above 15 GeV

Low momenta: TOF's up to TOF3 Intermediate: TOF's and Cerenkov's High momenta: Cerenkov's

K/π separation with C counters at 15 GeV/c

 π/K rejection with Cherenkov counters is better than 10⁻⁵
 K to π misid probability is at 10⁻³ level, due to particles pileup

Beamline simulation for NA56/SPY

- Multiple scattering + beam OPTICS (TURTLE) + nuclear collisions
- Comparison to data -> simulation reliable in the first part of the beamline (up to TOF3)
- Discrepancies downstream of TOF3 (correct TURTLE predictions, quote residual discrepancy as systematic error max 8 %)

NA56/SPY monitor of primary p intensity

SEM: secondary emission of electrons from Al/Ti foils monitor the beam intensity
Complete foils (BSI) -> absolute intensity
Thin strips (BBST V-H) -> spot size
Al foil activation calibrated in the WANF with proton intensity measured by BCT

Precision 1.3 %

✤ Long term stability +- 1%

Some NA56/SPY results: the K/ π ratio

- Solid points negatives,
 open points positives
- Errors 3 %
- K content (depleted by decays) enriched by trigger prescaling
- ◆ 2 samples (one trigger natural composition, the other heavy particles K,p,..)
 ◆ K/π=(K/p)_{heavy sample}(p/π)_{natural}

Some NA56/SPY results:π/K/p inclusive invariant cross sections

- Forward invariant cross sections
- Model independent extrapolation to zero target thickness with data itself (L=100,200, 300 mm targets)
 Total error 10%

The existing parameterizations of secondary particle yield at high energy

Simple formulas fitting the yield of charged secondary particles from 400 GeV/c protons on Be targets:

> Data above 60 GeV/c ($x \sim 0.15$) at $p_t = 0$ and 500 MeV/c

> H.W. Atherton et al., CERN 80-07, 1980: thin target approximation

$$\frac{d^2 N_{Be}}{dp \, d\Omega} = A p_{\max}(B e^{-Bx}) \left(\frac{2C}{2p} x^2 e^{-Cp_l^2}\right)$$

> A.J. Malensek, FN-341,1981: thick target approximation (500 mm)

$$\frac{d^2 N_{_{Be}}}{dp \ d\Omega} = Bx \frac{(1-x)^A}{(1+p_{_t}^2/M^2)^4} (1+5e^{-Dx})$$

Both fail at low x

A new parameterization of secondary particle yield from thick targets: the BMPT parametrization

- Goal: improvement with respect to previous models at low x (and p_T ® 0). H.W. Atherton et al., CERN 80-07, 1980, A.J. Malensek, FN-341,1981
 Secondary yield from fit of:
 - > π^+ and K⁺ invariant cross-section data derived from Atherton et al. & NA56/SPY Collaboration data (Be target),
 - $\succ \pi^{-}/\pi^{+}$ and K⁻/K⁺ data
 - $> K_{L}^{0}$ evaluation from simple parton model.
- Evaluation of tertiary particles production:
 - Comparison of secondary production from targets of different thickness (100, 200, 300 mm and T9) in Na56/SPY.

Extrapolation to other target material and incident p energy:

- Known invariant cross-section dependence on Atomic Number.
- Comparison with other available data at different proton energy.

The invariant cross section

for secondary production of π^+ and K⁺

Empirical formula based on general physical arguments.

$$(E \frac{d^{3}s}{dp^{3}})_{Be} = A(1 - x_{R})^{a} (1 + \frac{a}{x_{R}^{2}}p_{t} + \frac{a^{2}}{2x_{R}^{d}}p_{t}^{2})$$
$$- (\frac{a}{x_{R}^{2}}p_{t})$$
$$e^{-(\frac{a}{x_{R}^{2}}p_{t})}(1 + Bx_{R})x_{R}^{-\beta}$$

Approximate factorization in x and p_t

♦ $(1-x)^a$ behavior in the forward direction for $x \rightarrow 1$ (quark counting rule)

- * x^{-b} behavior in for $x \to 0$ (non direct hadron formation mechanism)
- Exponential fall in p_t for soft interaction

x_R=E*/E*_{max} (greatly extends scaling to sub-asymptotic energies, Yen Phys. ReV. D10 (1974) 836) The invariant cross section for secondary production of π⁻ and K⁻ and K⁰_L
 ➤ Empirical formula describing π⁺/π⁻ and K⁺/K⁻ ratios:

$$R(p(=r_0(1+x_R)^{r_1};R(K)=r_0(1-x_R)^{r_1})$$

function of x only

R(p) and R(K) shapes supported by analysis of pp data by Ochs (Nucl. Phys. B118 (1977) 397)
 R(p) ® 1 for x ® 0; R(p) ® 5 for x ® 1;

> R(K) $(1-x)^{-3}$ for x @ 1;

 $> K_{L}^{0}$ production evaluated from simple parton model

 $N(K_{L}^{0}) = \frac{N(K^{+}) + (2n-1)N(K-)}{2n} \approx \frac{1}{4}(N(K^{+}) + 3N(K^{-}))$

(n = u/d ~ 2 assuming isospin symmetry)

Invariant cross sections: a) pions, b) kaons

Parametrization extrapolations

Extension to other target material:

$$(E\frac{d^{3}\boldsymbol{s}}{dp^{3}})_{A_{1}} = (\frac{A_{1}}{A_{2}})^{a}(E\frac{d^{3}\boldsymbol{s}}{dp^{3}})_{A_{2}}$$

From data on several nuclei:

★ Known dependence of the invariant cross section on atomic number A: $\alpha(x) ~ (0.74-0.55 x + 0.26 x^{2}).(0.98+0.21 p^{2}_{T})$

(D.S. Barton et al., Phys. Rev. D35 (1987) 35, Skubic et al., Phys. ReV. D18(1978) 3115)

= 5% systematic error from Be to C

Comparison with data at different incident proton energy:

- > 100 GeV/c proton on Carbon (D.S. Barton et al., Phys. Rev. D27 (1983) 2580)
- > 24 GeV/c proton on Beryllium (T.Eichten et al., Nucl. Phys. B44 (1972) 333)

The fit of the experimental data (Atherton et al. & SPY)

> To compare data with different proton energy:

From experimental secondary yield to invariant cross section

$$\frac{d^{2}N_{Be}}{dp/p\,d\Omega} = \left(E\,\frac{d^{3}s}{dp^{3}}\right)_{Be}\,\frac{p^{3}}{E}\frac{N_{0}rl_{p}f(L)}{A} \qquad f(L) = \frac{e^{-L/l_{s}} - e^{-L/l_{p}}}{1 - l_{p}/l_{s}}$$

- f(L) = naive absorption model (100 mm target) (secondaries reabsorbed without producing tertiares)
- tertiary production taken into account (extrapolation to zero thickness from thicker targets)

Fit parameters (10% error on data points assumed)

A α β Ba γ δ r_0 r_1 > π62.33.450.5171.576.100.1530.4781.052.05> K7.742.450.444-5.040.121 2γ 1.15-3.17

Comparison with other energies a)Eichten et al. (24 GeV/c) b)Barton et al. (100 GeV/c)

Empirical model for tertiary particles production on thick targets (SPY data)

Experimental evidences:

Comparison of secondary production from targets of different thickness (100, 200, 300 mm and T9) in SPY.

Naive absorption model inadequate at large thickness

Empirical assumptions (for long "needle-like" targets):

Tertiary particles produced mostly by re-interaction of leading secondary particle in the forward direction -> model to reproduce NA56/SPY data

Secondary particle yield from WANF and CNGS targets

- Simple description of target layout & proton beam:
 - WANF Beryllium target: 11x(10cm-rods + 9cm-air); 3 mm diameter
 - CNGS Graphite target: 8x(10cm-rods + 9cm-air) + 48cm-rod; 4 mm diameter
 - Proton beam with nominal energy (CNGS: 400 GeV, WANF: 450 GeV), width and divergence.

Proton interactions in target:

- Secondary production (π^{\pm} , K^{\pm} and K⁰_L) from parameterization.
 - Simple exponential distribution along target bars.
 - Attenuation due to re-interactions along path length in target included.
- Tertiary contribution from empirical model.

Tertiary production (modelled on NA56/SPY data)

M. Bonesini -NBI 02 Cern

WANF: Proton interactions in target

450 GeV protons
Beryllium target
30 mrad acceptance

Exit point from targe

- Black: Fluka
- Blue: Secondaries only
- Red: with Tertiaries

-50

n

100

50

Target length (cm)

WANF: proton interactions in target

- > 450 GeV p on Be target
- > 30 mrad acceptance

p,p_T secondary mesons from target

M. Bonesini -NBI 02 Cern

A fast neutrino beam simulation (based on BMPT parametrization)

- Secondary meson production from BMPT parametrization
- > 3-dimensional description of all beamline elements
- Tracking of parent mesons
- Neutrino production from parent meson decay (2/3 body decay included)
- Useful to check parametrization, fast simulation tool to "debug" beamlines

A fast neutrino beam simulation: phase-space weighting

M. Bonesini -NBI 02 Cern

WANF: comparison with CHARM II data

x 10⁶ v / G eV / 10¹³ p.o.t GeV / 10¹³ p.o.: 5000 The CHARM II collab., Eur. Phys. J. C11 (1999), 18 10⁹ 4000 > 450 GeV p on Be > 8 mrad acceptance $\bar{\nu}_{\mu}$ 3000 ν,, Detector at 881 m 108 > Negative focusing 2000 CHARM II data ✤ Anti-v_µ beam (10⁵ pot 10 \mathbf{v}_{μ} contamination 1000 50 100 150 200 10 20 30 50 E_v(GeV) E_v(GeV)

M. Bonesini -NBI 02 Cern

An application to NuMI

Comparison BMPT, Mars, GFLUKA in Minos near detecor

What is next?

New neutrino beams (K2K from 12 GeV/c proton synchroton, Miniboone from 8 GeV/c Booster at FNAL) +v-factory need new hadroproduction data -> new round of experiments at lower energy
 Harp at Cern (2-24 GeV/c, full solid angle acceptance, many nuclear targets)
 P907 at FNAL

The existing "parametrizations" at low energy

 Sanford-Wang, "Empirical Formulas for particle production in p-Be collision between 10 and 35 BeV/c", preprint BNL
 Cocconi, Koester, Perkins, UCRL-10022
 Von Dardel, CERN/NP 62-17
 All apply to v beams from incident protons at 10-30 GeV/c

Harp at the Cern PS

- 2-24 GeV/c incident p beam on nuclear targets (Be, C,Al, Cu, Sn, Ta, Pb, ... + Miniboone & K2K replica)
- Full solid angle acceptance
 PID for π/p separation

Aims: cross sections at a 2% precision See next talk for details (A. Guglielmi)

Conclusions

- Good quality hadroproduction data available, but mainly in the forward direction. Wait for the next round (Harp, ...) for lower energies and full solid angle.
- Parametrization of available high-energy data on particle production on light nuclei (BMPT):
 - Fits satisfactory the 400 & 450 GeV p-Be experimental data over a wide x and p_T range.
 - ✤ Can be safely extrapolated to thick target and to different proton momentum (® ~ 24 GeV/c) and target material.
 - Can be applied to neutrino beam simulations:
 - * Efficient (fast) alternative to full hadronic cascade codes
 - ✤ Reproduces existing data within ~ 10% (CHARM II and ...)

Acknowledgements

Many thanks to F. Pietropaolo for the generous loan of many transparencies and

to T. Tabarelli and A. Marchionni for enlightning discussions and the help in preparing these slides