CNGS Horns

CNGS Horns

- Introduction
- Design
- « Remote »
- Timing tests

Horn exchange

- Striplines
- Procedure
- Exchange Exercise

Introduction

Introduction

- Weight ~1.2t (Reflector: 1.8t)
- 7 meters long, inner & outer conductor

at downstream end

- Upper frame (exchange) & lower frame (align)
- Electric (manual) & water connections (automatic)

Inner conductor

Heat load horn: 15 kW (Joule) + 6 kW (beam)

Cooling through top sprayers, 1.2 bar

Support Points (3) 3x3 grooves in inner conductor SSteel cables Insulator Outer conductor

Magnetic field: Max.1.5 Tesla

28/08/2006

Designed for remote handling

Pre-guiding elements, cameras, remotely steered crane, cameras, plug-in water connection...

Pre-guiding upper frame vs. lower frame

28/08/2006

Crane with Cooldinates

Plug-in Water Connection

Grafoil seals

Grafoil seal

 98% pure graphite

 → Resists high radiation
 Needs only ~5MPa contact pressure

Other applications:

- Two way-valve with spherical graphite seal (switching between water feed circuits)
- Seal between insulating glass disk and plates of electrical connection

28/08/2006

Decoupled Frames

Seal contact force (from spring) = 2000N

To absorb force

- → Need for rigid lower frame
- \rightarrow Fix collector tube to rigid upper frame

PDP

Fast Coupling Connection (horn exchange)

28/08/2006

→Natural frequency horn: 149Hz (reflector: 73Hz)

- \rightarrow Data collected for future study of effect of
 - Cooling water temperature
 Glass disk assembly

28/08/2006

Vibration tests

(courtesy of R. Wilfinger CERN/TU Vienna)

→ Optimum of 50ms gap for horn (less fragile reflector: optimum @48ms, +20%@50ms)

28/08/2006

Timing: pulse start

During commissioning:

Electrical Pulse Timing

Vary from -2ms to 2ms w.r.t. nominal, Measure muons

Conclusion of successful commissioning (400000 pulses): CNGS Horn design validated (glass disk, water circuit, inner conductor,...)

Horn exchange

Fatigue → Life time of horn (95% confidence): 20 million pulses = 5 years

Highly radioactive zone: →Maximize remote & automatic → Minimize dose

→ Define detailed procedure

 (interaction with RP^(*) experts)
 → Do complete exercise
 (realistic conditions)
 → Documentation (photo, film)
 is extremely important!

Define procedure

- Design phase: Optimization with respect to dose
- Experience → First draft of procedure
- Input to HAZOP study (*)
 - \rightarrow main remaining risks identified
- New version written with input from study & experts (radioprotection, handling, transport, ...)
- Tools designed, produced & tested
- Steps were tested & timed \rightarrow optimisation
- 100% remote handling (shielding):
 Tested → coordinates noted down in worksheets

→ Updated procedure = script for exercise

(*) Hazard & Operability study

28/08/2006

Striplines

Horn exchange procedure

- Disconnect Fast Coupling Take out Stripline Link Move stripline (open) → horn disconnected
- Open shielding
 (roof & side wall)
 Exchange horn remotely
 Close shielding
- Move stripline (close)
 horn reconnected
 Put Stripline Link back
 Connect Fast Coupling

Disconnect Fast Coupling

Fast Coupling

Stripline Link (rigid plates) (with shielding in place)

before

Move stripline down (open)

→ Fast Coupling is disconnected

Open shielding

before

« mushrooms » as guide

Overhead crane with coordinates

28/08/2006

Remove old horn & Install new

100% Remote (radioactive)

from: target chamber to : radioactive storage

28/08/2006

50% Remote (clean)

Close shielding

before

100% Remote

Storage blocks

after

Crane coordinates recorded during exercise

28/08/2006

Connect Fast Coupling

Move stripline up

→ Fast Coupling is closed

Horn exchange exercise

Final test = complete exchange

- Realistic conditions:
 - Suits, gloves, masks
 - Lighting, location

- Locations photographed (storage, intervention)
- Every step filmed (except if 100% remote)
- Every step timed and observed by RP experts
- With last inputs \rightarrow final documents

Detailed
procedureWorksheets
(crane/human)Tools
descriptionFilm
PhotosMock-up for
trainingConclusion of successful horn exchange:

CNGS Horn exchange procedure validated Through documentation, tools, mock-up \rightarrow knowledge remains