First results of the CNGS beam monitor with LVD

H. Menghetti for the LVD Collaboration
Bologna University and INFN
Figure 1.1.1: Sketch by A. Zichichi, 1979
Why a monitor at LNGS?

"to get some feed-back":

Neutrino flux monitors at Gran Sasso
monitor intensity and time-stability of beam

Large area
μ detectors
(≈15x15 m²)

from CERN

Hadrons

interaction in up-stream rock

νμ

ν from CERN

νμ

Halls

L’Aquila
Highway tunnel
Terano

0.86 μ/m²/day
≈ 200 μ/day in each GS hall

1% statistical error
in 1 week - from 3 GS hall
"Real time" feedback

18 September 2002
CNGS - a long baseline neutrino beam facility in Europe,
presented by K. Eiseiener (CERN) at Aarhus University

H. Menghetti for the LVD Collaboration, First results of the CNGS beam monitor with LVD, LNGS, August 22nd 2006
Large Volume Detector

H. Menghetti for the LVD Collaboration, *First results of the CNGS beam monitor with LVD*, LNGS, August 22nd 2006
Large Volume Detector

- 3 identical towers in the detector
- 35 active modules in a tower
- 8 counters in one module

H. Menghetti for the LVD Collaboration, First results of the CNGS beam monitor with LVD, LNGS, August 22nd 2006
Large Volume Detector

H. Menghetti for the LVD Collaboration, *First results of the CNGS beam monitor with LVD, LNGS, August 22nd 2006*
Neutrinos from CNGS are observed through:

- the detection of **muons** produced in neutrino **CC** interactions with the surrounding rock or in the detector
- the detection of the **hadron jets** produced in neutrino **NC/CC interactions** in the detector

H. Menghetti for the LVD Collaboration, *First results of the CNGS beam monitor with LVD*, LNGS, August 22nd 2006
LVD monitor of the CNGS beam

The neutrino candidate are defined as at least a signal from a counter of the detector with an energy deposit greater than 100 MeV.

We can discriminate CNGS event from cosmic muons requiring:

- horizontal direction of the reconstructed muon
- time coincidence of the event with the CNGS time spill (cosmic muon background is then about 0.2 events/day)

From the Montecarlo simulation we expect 6.67×10^{-16} events/proton on target (p.o.t.)

1 year of data (200 days) \rightarrow 4.5×10^{19} p.o.t. \rightarrow 150 events/day

H. Menghetti for the LVD Collaboration, First results of the CNGS beam monitor with LVD, LNGS, August 22nd 2006
Event Display: μ from rock

Simulation!

H. Menghetti for the LVD Collaboration, *First results of the CNGS beam monitor with LVD, LNGS, August 22nd 2006*
Event Display: internal ν CC

* Interaction vertex
 $E_\nu = 26.1 \text{ GeV}$
 $E_\mu = 5.6 \text{ GeV}$
 E released = 8.7 GeV
 Missing $E_h = 6.8$ GeV
 Missing $E_\mu = 3.6$ GeV
 Missing $E_{\text{IRON}} = 7.0$ GeV

H. Menghetti for the LVD Collaboration, First results of the CNGS beam monitor with LVD, LNGS, August 22nd 2006
Event Display: internal ν NC

YZ PROJECTION \rightarrow EVENT 68

* Interaction vertex

$E_v = 19.5 \text{ GeV}$

E released = 9.8 GeV

$\text{Missing } E_h = 1.6 \text{ GeV}$

$\text{Missing } E_{\text{IRON}} = 8.1 \text{ GeV}$

Simulation!

H. Meneghini for the LVD collaboration, first results of the CNGS beam monitor with LVD, LNGS, August 22nd 2006
Results
CNGS beam: commissioning

During the commissioning week, 14 - 18 August, the CNGS beam started. On the 16th there were the first beam spills with high intensity (about 1.3×10^{13} p.o.t./spill); the integrated beam intensity during this period was 2.79×10^{15} p.o.t. and we expected 1.9 events.

We observed 2 events (cosmic background of about 0.07).

On August 16th, at 20:08:03 UTC, the LVD detector has seen the first CNGS event: OvE!

H. Menghetti for the LVD Collaboration, First results of the CNGS beam monitor with LVD, LNGS, August 22nd 2006
The first CNGS event: OvE

LVD SIDE VIEW

SIDE VIEW → EVENT 138950

TOP VIEW → EVENT 138950

Run 28543 Event 138950
16/8/6 21.8.3
Total energy = 2.18491 GeV
released in 7 counters

H. Menghetti for the LVD Collaboration, First results of the CNGS beam monitor with LVD, LNGS, August 22nd 2006
CNGS beam run

From August 18th, at about 11:30 UTC, the CNGS beam started with an intensity of about 1.4×10^{13} p.o.t./spill, about 60% of the nominal intensity).

In about 89 hours of data taking LVD has collected 289 CNGS events.

H. Menghetti for the LVD Collaboration, First results of the CNGS beam monitor with LVD, LNGS, August 22nd 2006
Event Display: μ from rock

SIDE VIEW \rightarrow EVENT 39368

TOP VIEW \rightarrow EVENT 39368

Run 28569 Event 39368
19/8/6 13.15.7
Total energy = 1.93895 GeV
released in 9 counters

H. Menghetti for the LVD Collaboration, First results of the CNGS beam monitor with LVD, LNGS, August 22nd 2006
Event Display: internal ν CC?

SIDE VIEW → EVENT 102901

DATA!

Run 28577 Event 102901
20/8/6 10.6.27
Total energy= 7.75282 GeV
released in 38 counters

H. Menghetti for the LVD Collaboration, First results of the CNGS beam monitor with LVD, LNGS, August 22nd 2006
Event Display: internal ν NC/CC?

DATA!

Run 28560 Event 38069
18/8/6 14.44.58
Total energy = 1.26835 GeV
released in 9 counters

H. Menghetti for the LVD Collaboration, *First results of the CNGS beam monitor with LVD, LNGS, August 22nd 2006*
LVD rate

CNOS run started on 18th August UTC time 11.30
- Observed
- Expected = (6.7 \times 10^{-16} \text{ ev/p.o.t.}) \times \text{beam intensity}

Run time (1 bin = 1 hour)

Integrated beam intensity (p.o.t.)

Events

0 100 200 300 400 500 600
18.8, 11:30
20.8, 09:12
21.8, 07:30
22.8, 04:17

Expected
Observed

Agreement between the observed events and the expected from the beam intensity!

H. Menghetti for the LVD Collaboration, First results of the CNGS beam monitor with LVD, LNGS, August 22nd 2006
Time event distribution

The LVD CNGS events time distribution with respect to the time spill agrees with the duration of the spill!

H. Menghetti for the LVD Collaboration, First results of the CNGS beam monitor with LVD, LNGS, August 22nd 2006
Nb fired counters

<table>
<thead>
<tr>
<th>Entries</th>
<th>289</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>7.289</td>
</tr>
<tr>
<td>RMS</td>
<td>4.828</td>
</tr>
</tbody>
</table>

Measured

Simulated

H. Menghetti for the LVD Collaboration, *First results of the CNGS beam monitor with LVD, LNGS, August 22nd 2006*
Total energy released

<table>
<thead>
<tr>
<th>Entries</th>
<th>289</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>1243.0</td>
</tr>
<tr>
<td>RMS</td>
<td>800.4</td>
</tr>
</tbody>
</table>

Measured

Simulated

H. Menghetti for the LVD Collaboration, *First results of the CNGS beam monitor with LVD, LNGS, August 22nd 2006*
Beam database

It seems that there are some discrepancies in the CNGS beam database:

- sometimes there is no information about the beam spill intensity (about 5%)

- some good events (about 10% - preliminary) are not in coincidence with the time spill
Conclusion

The analysis of data taking with the LVD detector shows that:

the CNGS beam is working very well as it was expected

✓ we continue to collect data and update the results
✓ we want to make a deeper analysis of the data to extract more informations (external/internal, CC/NC)

CONGRATULATIONS TO THE CNGS CERN GROUP AND TO ALL LNGS PEOPLE!

H. Menghetti for the LVD Collaboration, First results of the CNGS beam monitor with LVD, LNGS, August 22nd 2006
The End?
No, the Beginning!