

Starting OPERA data taking with the CNGS beam

OPERA collaboration

Structure of the OPERA Experiment

31 target planes / supermodule (in total: 206336 bricks, 1766 tons)

Proposal: July 2000,

Targets

installation at LNGS started in May 2003

First observation of CNGS beam neutrinos: August 18th, 2006

OPERA in pictures

Second Super-module

OPERA collaboration

CNGS beam performances

Integrated proton intensity delivered onto the CNGS target

3¹⁷ pot August 21th, 8:25

Pot per extraction as a function of time

Event selection by using GPS timing informations

 Δt closest extraction (ns)

OPERA collaboration

Beam event

CC event originated from material in front of the detector (BOREXINO, rocks)

CC event in the first magnet

(forgive about the red-line fit)

OPERA collaboration

LNGS, August 21st

Angular distribution of all events

Clean selected events

Conclusions

- The CNGS beam is operating smoothly with very good quality
- The tracking detectors of OPERA are taking data with practically no dead time
- · More than 100 beam correlated events have been observed with a clean time distribution
- The recorded events show the expected tracking performances
- OPERA is now ready for the next step: observing neutrino interactions in the Emulsion Cloud Chamber bricks