Analysis techniques to reduce systematics due to Hadron production

(and other beam related issues)

Michał SZLEPER Northwestern University

- 1. How best to use information from the near detector. a. Standard approach for an on-axis experiment.
 - b. Improved approach and its generalization to off-axis.
- 2. Prediction of the non-oscillated far detector spectrum.
 - 3. Evaluation of the ν_e component of the beam.

Standard approach with near detector I

How to predict accurately the non-oscillated ν_{μ} spectrum at a far detector?

- \bullet Present knowledge direct predictions from various hadron production models differ by up ro \sim 25%.
- Standard method: predict far detector spectrum based on spectrum measured in a near detector "double ratio" method:

$$\frac{dN_{Far}}{dE} = \begin{bmatrix} \frac{dN_{Far}}{dE} \\ \frac{dN_{Near}}{dE} \end{bmatrix}_{nominal} \times \frac{dN_{Near}}{dE}$$

- Nominal Far/Near ratio determined primarily by beamline geometry.
- Non-oscillated far detector spectrum predictible within a few per cent.

Standard approach with near detector II

"Double ratio" method applicable whenever the following is true:

Each neutrino observed in the near detector \equiv expected certain flux of neutrinos in the far detector, with $E_{Far} = E_{Near}$.

i.e., when secondary pion beam sees both detector at the same angle, $\Theta_{Far} = \Theta_{Near}$.

BUT:

• What about a realistic beam treatment (beam with imperfect pion focusing)?

 $\Theta_{Far} \neq \Theta_{Near}$

• What about an off-axis experiment?

 $\Theta_{Far} \neq \Theta_{Near}$

"Double ratio" method breaks down, more general approach required.

Standard approach with near detector III

NNN Michał SZLEPER Analysis techniques to reduce systematics... 4

Improved approach I

On-axis experiment with imperfect focusing:

• An improved prediction of the far detector spectrum requires exactly the same approach as in off-axis, allowing $E_{Far} \neq E_{Near}$ in the general case.

The difference $\Theta_N - \Theta_F$ increases with z.

Improved approach II

What we want:

Predict far detector spectrum for a realistic beam and an arbitrary location of the detector with accuracy comparable to the on-axis perfect focusing case

• The same parent pion beam implies always a strong correlation between ν spectra in the on-axis near detector and an arbitrary (including off-axis) far detector.

• Different angle implies different neutrino energy:

 $E_{\nu} = \frac{0.43 \ E_{\pi}}{1 + \gamma^2 \theta^2} \quad \rightarrow \quad E_{Far} \neq E_{Near}.$

• Each neutrino observed in the near detector \equiv expected certain flux of neutrinos in the far detector, with $P(E_{Far}, E_{Near}) \neq \delta(E_{Near})$:

$$\frac{dN_{Far}}{dE_{Far}} = \int P(E_{Far}, E_{Near}) \frac{dN_{Near}}{dE_{Near}} dE_{Near}.$$

• $P(E_{Far}, E_{Near})$ determined primarily by beamline geometry (and location of the far detector).

Improved approach III

How to get $P(E_{Far}, E_{Near})$

• Every decaying pion is assigned to weights: $w_{Near/Far} = w_{Near/Far}(E_{\pi}, \Theta_{\pi}, z, r)$, defined as the fraction of all decays with a neutrino ending up in the near/far detector.

• Neutrino energies $E_{Near/Far}$ are unambiguously given by $E_{\pi}, \Theta_{\pi}, z, r$.

• For a point-like pion source, every neutrino with E_{Near} implies w_{Far}/w_{Near} neutrinos with E_{Far} .

• For a non-trivial, known, pion decay distribution $\Phi_{\pi}(E_{\pi}, \Theta_{\pi}, z, r)$:

$$P(E_{Far}, E_{Near}) = \frac{\int \int \int \int \Phi_{\pi} w_{Far} dE_{\pi} d\Theta_{\pi} dz dr}{\int \int \int \int \Phi_{\pi} w_{Near} dE_{\pi} d\Theta_{\pi} dz dr}$$

with integration over all phase space yielding E_{Near} and E_{Far} in the numerator, and E_{Near} in the denominator.

Improved approach IV

• Far spectrum prediction in finite energy bins:

 $P(E_{Far}, E_{Near}) \rightarrow M(N_{bins} \times N_{bins}).$

 $\overrightarrow{N}_{Far} = M \cdot \overrightarrow{N}_{Near}$

M - Near-to-far correlation matrix, in general non-diagonal.

Toy example with 2 energy bins

$$\begin{pmatrix} N_1^{Far}, N_2^{Far} \end{pmatrix} = \begin{bmatrix} M_{11} & M_{12} \\ M_{21} & M_{22} \end{bmatrix} \begin{bmatrix} N_1^{Near} \\ N_2^{Near} \end{bmatrix}$$
(1)

- On-axis, perfect focusing: $M_{12}, M_{21} = 0$.
- Realistic on-axis: $M_{21} > 0$.
- Off-axis: $M_{12} >> 0, M_{21}, M_{22} \approx 0.$

On-axis experiment - hadron production

Realistic on-axis experiment

Low energy beam

Medium energy beam

NNN Michał SZLEPER Analysis techniques to reduce systematics... 9

On-axis experiment - other beam related issues

Upper plots: *M* matrix, lower plots: double ratio

Beam simulation (PBEAM spectrum) Horn 1 shifted by 2 mm

NNN *Michał SZLEPER* Analysis techniques to reduce systematics... 10

Off-axis experiment - hadron production

Low energy option

Predictions for far detector spectra (NuMI beamline, LE, L = 735 km), D = 10 km off axis.

 \bullet On absence of any near detector: ${\sim}25\%$ uncertainty.

• With an on-axis near detector (*M* matrix derived from each model):

GFLUKA: 74.2 events 1-3 GeV, BMPT: 74.3 events, MARS: 74.7 events, Malensek: 75.4 events.

Off-axis experiment - hadron production

Medium energy option

Predictions for far detector spectra (NuMI beamline, ME, L = 735 km), D = 10 km off axis.

 \bullet On absence of any near detector: ${\sim}40\%$ uncertainty.

• With an on-axis near detector (*M* matrix derived from each model):

GFLUKA: 81.9 events 1-3 GeV, BMPT: 82.4 events, MARS: 82.6 events, Malensek: 82.6 events.

Off-axis experiment - focusing system

Presence of an onaxis near detector assumed.

Prediction: Undistorted M matrix applied to the distorted near detector spectrum.

Total expected ν_{μ} CC rate for $1 < E_{\nu} < 2.5$ GeV can be predicted within ~5%.

Off-axis experiment - ν_e background

Hadron production related uncertainties are minimized by using ν_{μ} information from the on-axis near detector.

E.g., for $1 < E_{\nu} < 2.5$ GeV, the total rate is predictible to ~6%.

Here, a Near- ν_{μ} -tofar- ν_{e} correlation matrix M' can be evaluated \rightarrow possibly a still more accurate prediction.

