NBI02@CERN Mar. 17, 2002

1

K2K beam MC

Takashi Kobayashi IPNS, KEK for T.Maruyama, J.Hill, and K2K Beam Mon. G

Contents

- 1. Beam MC in K2K
- 2. K2K Beam MC
- 3. Comparison with K2K data
 - 1. Pion monitor
 - 2. Front detector
- 4. Comparison with other data
- 5. Future
- 6. Summary

Beam MC in K2K

- How beam MC is used in K2K -

$$N_{SK}^{\exp} = N_{FD}^{obs} \cdot R$$

$$R \equiv \frac{\sum_{i} \Phi_{i}^{SK} \cdot \sigma_{i}^{SK} \cdot \varepsilon_{i}^{SK}}{\sum_{i} \Phi_{i}^{FD} \cdot \sigma_{i}^{FD} \cdot \varepsilon_{i}^{FD}} \cdot \frac{M_{SK}}{M_{FD}} \cdot \frac{POT_{SK}}{POT_{FD}}$$

	$E_{\nu} < 1 \text{GeV}$		$E > 1C \circ V$
	$\epsilon_i^{FD}=0$	else	E_{V} TGe V
Cent value	MC(R)		$MC(R)=\pi$ mon meas
Error	$\Delta \Phi_i^{SK}$	ΔR	$\Delta R ~(\pi$ mon meas.)
	(FD meas.)	(MC test)	
	Scifi,MRD	1kt (K2K official)	
	(Ev<0.5GeV)		

2

K2K latest results

Results

 $\sin^2 2\theta = 1.0$

Event Category	Observed	Expected	$\Delta m^2 = 3 \times 10^{-3} eV^2$
Single Ring µ-like	30	44.0±6.8	24.4
Single Ring <i>e</i> -like	2	4.4 ±1.7	3.7
Multi Ring	24	32.2±5.3	24.3
TOTAL	56	80.6 +7.3 -8.0	52.4

Dominant Systematic Errors are an uncertainty of far-near ratio (~7%) and an uncertainty of 1kt fiducial volume (~4%).

Far/near extrapolation dominates systematic error

K2K beam MC

Measured proton beam profile

V39

@Target (3σ) X:6mm Y:36mm

Hadron production

Sanford-Wang formula w/ parameters fitted to Cho data

$$E \times \left(\frac{d^3 \sigma}{dp^3} \right) (\text{mbarns/GeV}^2) = \sigma_{total} \mathcal{W}_1 P_{\pi}^{\mathcal{W}_2} \cdot (1 - P_{\pi}/P_p)$$

$$\times e^{-\left(\mathcal{W}_3 P_{\pi}^{\mathcal{W}_4}/P_p^{\mathcal{W}_5} \right)}$$

$$\times e^{-\left(\mathcal{W}_6 \theta_{\pi} \left(P_{\pi} - \mathcal{W}_7 P_p (\cos \theta_{\pi})^{\mathcal{W}_8} \right) \right)}$$

for protons of momentum $P_p(GeV/c)$ to produce pions at momentum P_{π} and angle θ_{π} For CERN's best fit to all data the parameters for π^+ are:

 $\mathcal{W} = (0.881, 1.01, 2.26, 2.45, 2.12, 5.66, 0.14, 27.3)$

Calculation and data

Decay

 $ightarrow \pi^+
ightarrow \mu^+
ightarrow \nu_{\mu}$ $\rightarrow \mu^+ \rightarrow e^+ + \nu_e + \nu_\mu$ $> K^+ \rightarrow \mu^+ + \nu_{\mu}$ $> K^+ \rightarrow \pi^0 + \mu^+ + \nu_\mu$ $ightarrow K^+ \rightarrow \pi^0 + e^+ + v_e$ $\triangleright \mathsf{K}^{0} \rightarrow \pi^{\pm} + \mu^{+} + \nu_{\mu}$ $K^0 \rightarrow \pi^{\pm} + e^{+} + v_{e}$

And their charge conj.

Single parent particle decays 1000 times muon polarization taken into account

MC neutrino spectrum

"Cho" is our K2K official reference MC

Comparison w/ K2K data (1)

Data vs K2K ref. MC (Cho)

Convolution of Proton profile Hadron production Absorption Horn mag. field

Convolution of Proton profile Hadron production Absorption Horn mag. field

Data vs Fitted dist.

Convolution of Proton profile Hadron production Absorption Horn mag. field

Neutrino spectrum (π mon vs Cho)

Convolution of Proton profile Hadron production Absorption Horn mag. field TS,DV geom.

Neutrino spectrum (pmon vs Gcalor)

Convolution of Proton profile Hadron production Absorption Horn mag. field TS,DV geom.

Far/near ratio (π mon vs Cho) x 10 0.3 far/near ł Pion monitor 0.25 Neutrino Beam Simulation 0.2 Convolution of Proton profile 0.15 Hadron production Absorption Ohorn mag. field 0.1 **•**TS,DV geom. Integrated above 2.5 GeV

2

1.5

 \rightarrow

 $E_{v}(GeV)$

3

2.5

0.05

0

0

0.5

1

Far/near (Cho vs Gcalor)

MC Comparison of far/near ($\Phi \times \sigma$) for standard and Fluka

Comparison w/ K2K data (2)

front detector (Scifi tracker)

Convolution of Proton profile Hadron production Absorption Horn mag. field TS,DV geom. Cross section Detector acceptance Energy reconstruction Resolution

Hadron production

Future

Measure hadron production by 12GeV protons on K2K Al target (HARP) End of summer in 2002 • measure (p_{π}, θ_{π}) dist. Put the data into beam MC No need of any parameterization Just put the distribution (in principle) Replace far/near ratio (central value and error) by the value based on the new MC

Calculation and data

Summary

K2K relies on beam MC for far/near extrapolation only for <1GeV, essentially K2K std. MC (SW w/ Cho) reproduces pion dist. fairly well v spect. and far/near ratio very well Gcalor(Fluka) produces more flux and harder spectrum Absolutely need pion production data (HARP) to reduce far/near syst. error.