

CERN Neutrinos to Gran Sasso (CNGS): **Commissioning and First Operation**

Edda Gschwendtner

AB/ATB/EA

on behalf of the CNGS project and commissioning teams

- 1. Introduction
- 2. Proton Beam Line Commissioning
- 3. Secondary Beam Line Commissioning
- 4. CNGS Operation
- 5. First Events at Gran Sasso (OPERA)

CNGS (CERN Neutrinos to Gran Sasso)

- → A long base-line neutrino beam facility (732km)
- send v_{μ} beam produced at CERN
- → detect v_{τ} appearance in experiments at Gran Sasso

\rightarrow direct proof of v_{μ} - v_{τ} oscillation (appearance experiment)

AB Seminar, 21 Sept. 2006

v_{τ} – Appearance Experiment

• Beam optimization:

- → Intensity: as high as possible
- → Neutrino energy: matched for v_{μ} - v_{τ} appearance experiments

Product of

- 1. Oscillation probability $v_{\mu} v_{\tau}$
- 2. Production cross-section v_{τ} with matter
- 3. v_{μ} –fluence(E)

+ Detection efficiency in the experiment

Look for the τ lepton :

→ extremely difficult:

τ travels only less than 1 mm before decaying

5 years CNGS operation, 1800 tons target: 30000 neutrino interactions

- $\sim \! 150 \nu_{\tau}$ interactions
- $\sim 15 v_{\tau}$ identified
- < 1 event of background</p>

Approach:

→ very good position resolution (see the decay 'kink'): OPERA (ICARUS: see status report at the next SPSC 3 Oct. 2006)

Radial Distribution of the v_{μ} **-Beam at GS**

C

$$p + C \rightarrow (interactions) \rightarrow \pi^+, K^+ \rightarrow (decay in flight) \rightarrow \mu^+ + \nu_{\mu}$$

Beam parameters	Nominal CNGS beam	
Nominal energy [GeV]	400	500kW beam nowe
Normalized emittance [µm]	H=12 V=7	
Emittance [µm]	H=0.028 V= 0.016	
Momentum spread Δp/p	0.07 % +/- 20%	
# extractions per cycle	2 separated by 50 ms	
Batch length [µs]	10.5	Upgrade
# of bunches per pulse	2100	phase:
Intensity per extraction [10 ¹³ p]	2.4	3.5 10 ¹⁰ p
Bunch length [ns] (4σ)	2	
Bunch spacing [ns]	5	
Beta at focus [m]	hor.: 10 ; vert.: 20	FE FE
Beam sizes at 400 GeV [mm]	0.5 mm	
Beam divergence [mrad]	hor.: 0.05; vert.: 0.03	
Expected beam performance: 4.5	x 10 ¹⁹ protons/year on target	=6 s

AB Seminar, 21 Sept. 2006

Proton Beam Line Commissioning

MBG (Dipoles) 73 magnets (5 spares) Gap height 37mm Nominal field : 1.7 T @ 400 GeV Magnetic length : 6.3m QTG (Quadruples)
20 magnets (3 spares)
Magnetic aperture : 45mm
Nominal gradient 40 T/m, 2.2m long

MDG (Corrector Magnets)

- 12 magnets (5 spares)
- Gap height : 45mm
- Bending angle 80mm, 0.7m long

Final focusing onto the target (recuperated magnets)

THE

billion

BN collimator, d=14mm

IN SAL "FRAG Be window, t=100µm

Proton beam: last beam position / beam profile monitors upstream of the target station collimator and shielding

Hardware commissioning

Feb. – April 2006

- Beam instrumentations
- → Power supplies
- → Magnets (polarities)
- → Vacuum system
- → (April / May: Target / Horn exchange excercises 'real')
- **'Dry runs' from CCC**
 - → Timing
 - → Controls
 - → Interlocks
 - → Beam permit
 - → Magnets (currents & polarities)
- Commissioning with beam

2006: weeks 28, 30 and 33

April – May 2006

<u></u>
<u>
</u>

1st shot down proton beam line: beam is already well centered on screens

8 profile monitors (BTVG): Optical Transition Radiation screens:

- 75 µm carbon
- 12 μm titanium screens

CNGS Beam Position Monitors

STYLE

BTVG 410706

........

..................

18 Button Electrode BPMs in TT41 60mm Aperture

...............

Average of two extractions. 1E13 protons per batch

energy difference of 6.10-5

\rightarrow Beam position stability onto the target over the 3 first days: $\sim 50 \ \mu m \ rms$

CNGS Target Beam Position Monitor

Stripline coupler pick-up, operated in air

→ very reliable position reading

AB Seminar, 21 Sept. 2006

TT41: ALL screens OUT, at the exception of the target one

	Dev	vice : BLMICNGS	•		
Interlock Setting	s Interlock	Reset & Latch			
BLMICNGS	104 - 114241		4		
Values in milliGray Get Set			🗌 Show Test & Setup Tools		
BLM Name	Gain	Loss/Ex1	Loss/Ex2	Threshold	
BL410024	16	0.0000	0.0000	25.000	
BL410145	16	0.0499	0.0428	5.000	
BL410307	16	0.0641	0.0641	5.000	
BL410607	16	0.0855	0.0855	5.000	
BL410707	16	0.0926	0.0926	5.000	
BL410907	16	0.1069	0.1140	5.000	
BL411107	16	0.2423	0.2494	5.000	
BL411507	16	0.0000	0.0000	5.000	
BL411807	16	0.0000	0.0000	5.000	
BL411907	16	0.0000	0.0000	5.000	
BL412007	16	0.0000	0.0000	5.000	
BL412243	16	0.0214	0.0285	5.000	
BL412445L	16	1.5461	1.5176	5.000	
BL412445R	16	1.5889	1.5604	5.000	

CNGS BLMs with double extraction 1.1013

AB Seminar, 21 Sept. 2006

Secondary Beam Line Commissioning

TBID / 2 Ionization Chambers

Muon Detectors

TBID: <u>**T**</u>arget <u>**B**</u>eam <u>**I**</u>nstrumentation <u>**D**</u>ownstream

AB Seminar, 21 Sept. 2006

10 cm long graphite rods, Ø = 5mm and/or 4mm

- **<u>Note</u>:** target rods thin / interspaced to "let the pions out"
 - target shall be **robust** to resist the beam-induced stresses

- target is air-cooled (particle energy deposition)

Ten targets (+1 prototype) have been built. They are assembled in two magazines.

Target Magazine

Target magazine installation inside target station (25 Nov. 2005)

→ Check efficiency of particle production in the target

- Multiplicity (Compare with BFCT upstream of the target)
- Misalignment of the Beam vs. Target

TBID Monitor

- Secondary emission monitor
- 12 µm Ti foils
- diameter = 145mm
- better than 10⁻⁴ mbar vacuum

TBID Monitor might not survive if high intensity beam misses the target →Ionization Chambers as back-up (SPS-type BLMs)

Intensity on TBID vs. BPM2

Intensity on TBID vs. BPM2 position

Installation of the horn in the target chamber

-

0

6

-

- (148-

-

· 3,751

FI-THI

Horn

ini **sinini**ni i teatrice ini

ITI IN TAS

Watani 🛃

TT JEAN

It n in has

Horn/Reflector Power System

AB Seminar, 21 Sept. 2006

Decay Tube

- steel pipe
- 1mbar
- 994m long
- 2.45m diameter, t=18mm, surrounded by 50cm concrete
- entrance window: 3mm Ti
- exit window: 50mm carbon steel, water cooled

Hadron Stop

cooling modules

graphite

Hadron Stop

completed Sept. 2003

Cooling modules: stainless steel tubes in Al blocks
Several temperature sensors (both in target chamber and in hadron stop)

Muon Monitors

Monitoring of:

- → muon intensity
- → muon beam profile shape
- → muon beam profile centre

Muon energy filter due to 67m rock in between pit 1 and pit 2.

Expected Muon Signals (FLUKA)

Muon Monitor Layout

LHC type Beam Loss Monitors

- → Parallel electrodes separated by 0.5 cm
- → Stainless steel cylinder
- → Al electrodes
- \rightarrow N₂ gas filling at 100 mbar over pressure
- Diameter=8.9cm, active length=34.5cm,
 1.5 litre
- → Dynamic range: 10⁵
- → Specs accuracies: 10% absolute, 3% relative, 1% cycle by cycle, 5% per year

CNGS installation:

- → 2 x 37 fixed monitors (Ionization Chambers)
- → 2 x 1 movable chamber behind fixed monitors for relative calibration
- → Movement by stepping motors

cm

target vs. horn misalignment: 3 mm → 10.1 cm shift in Muon Pit1 6 mm → 19.1 cm 9 mm → 24.3 cm

simulations

Muon pit 1: more sensitive to target vs. horn alignment

beam vs. target misalignment: 0.5 mm → 7.3 cm shift in Muon Pit2 1.0 mm → 14.8 cm

simulations

cm

AB Seminar, 21 Sept. 2006

AB Seminar, 21 Sept. 2006

Target Unit Tests

unit 1 : polycrystalline graphite by Carbone-Lorraine 2020 PT density 1.76 g/cm3

unit 3: carbon-carbon composite by Carbone-Lorraine A035 density >1.75 g/cm3

Average of 2 extraction, ~1.2E13 protons

Muon Signals in Pit 1

CNGS Operation

Muon Monitor Stability Pit 1

Horn Cooling

AB Seminar, 21 Sept. 2006

Detector readings during CNGS Opera run

The monitors show maximum radiation values of 1 μ Sv/h in accessible regions. Based on beam loss studies and simulations this corresponds to a beam loss of 0.05 %.

AB Seminar, 21 Sept. 2006

First OPERA Events

Proposal: July 2000, installation at LNGS started in May 2003 First observation of CNGS beam neutrinos : August 18th, 2006

AB Seminar, 21 Sept. 2006

OPERA in Pictures

OPERA

Second Super-module

Scintillator planes 5900 m² 8064 7m long drift tubes

Details of the first spectrometer

3050 m² Resistive Plate Counters 2000 tons of iron for the two magnets

AB Seminar, 21 Sept. 2006

Event Selection by Using GPS Timing Info

Cosmic rays background events

Beam Events

CC event in the first magnet

Vertical projection

Muon from CC interaction in the material in front of the detector (BOREXINO, rocks)

- CNGS construction started 2000
- Installation finished beginning 2006
- Detailed hardware commissioning
- 'Dry runs'
 - → Allowed early debugging of all systems
- CNGS has been successfully commissioned

\rightarrow CNGS is operational

- The most difficult part (high intensity operation) starts now
 - → Very high radiation levels
 - → Fatigue from beam impact (shocks) on equipment
 - → Fatigue from pulsing
 - → ...

MANY THANKS

to all involved in the project's success!