

CNGS proton beam

Malika Meddahi for SL/BT group CERN

- Layout of the proton line
- Beam parameters
- Extraction channel
- New magnets
- Intensity limitations
- Requirements for beam instrumentation

5/09/2000 M.Meddahi

Transfer line layout : branching Off

5/09/2000 M.Meddahi

Transfer line layout : half cell

5/09/2000 M.Meddahi

M.Meddahi

Beam parameters

Beam parameters	CNGS beam		
Nominal energy	400 GeV		
Normalized emittance	12 Qm		
Emittance	0.028 Qm		
# of extractions per cycle	2 separated by 50 ms		
# of train per extraction	1		
# of bunches per train	2090		
Intensity per extraction	2.4 10 ¹³ p		
Bunch length (4s)	2 ns		
r.m.s. bunch length	15 cm		
Bunch spacing	5 ns		
Train length	10.5 S		

Optics at target

Flexibility of the optics

 β^* at the focus (h/v)

20 m to 2.5 m

→ minimum beam size/maximum divergence 0.27 mm, 0.1 mrad

 $\Delta p/p$

0.12 %

5/09/2000 M.Meddahi

Trajectory correction scheme

Usual trajectory optimization criteria plus cost and space constraints

Optimized scheme two possible trajectory corrections:

Mode	Peaks of 3 s orbit	3 s exit	Monitor/Correct	
	(mm)	angle (mrad)	or counts	
1-to-1	X: 2 peaks @ 3.1	X: 0.05	X: 10 / 10	
	Y: 2 peaks @ 3.2	Y: 0.085	Y: 10 / 10	
Over-	X: 1 peak @ 2.7	X: 0.05	X: 10 / 7	
constrained	Y: 2 peaks	Y: 0.085	Y: 10 / 8	
	@2.7&2.9			

Y. Chao

Analysis includes injection, alignment, field errors and monitor offsets.

Orbit and angle errors correspond to the values at 3 • of the orbit error distribution

5/09/2000 M.Meddahi

Trajectories into the extraction channel

CNGS proton beam

MKE Kickers

MKE kicker parameters, LSS4 SPS extraction

Mode	proton energy	Rise time	Flat top	Fall time	Flat top ripple
	[GeV/c]	[µs]	[µs]	[µs]	
CNGS protons	400	<1.1	10.5	<1.1	<2 %

Jan Uythoven, SL/BT August 2000

5/09/2000 M.Meddahi

Transfer line : transport of primary protons

Compact magnets, re-use existing power supplies

MBG 73 magnets

Gap height 37 mm Nominal field : 1.7 T @ 400 GeV Magnetic length : 6.3 m

K. Schirm

QTG 21 magnets Magnetic aperture : 45 mm Nominal gradient 40 T/m, 2.2 m long

T. Zickler

CNGS proton beam

18

MBG 2D field profile (OPERA2D; Θ=0.985)

K. Schirm SL/MS 08/2000

5/09/2000 M.Meddahi

QTG Pole Shape (1/8)

T. Zickler SL/MS 08/2000

CNGS proton beam

20

QTG Gradient Homogeneity

QTNF	Requested G [T/m]	I[A]	G[T/m]	D G/Gmax	DG/G at 21mm	∢GdI [Tm/m]	Bmax [T]
400GeV	26.7	339.24	26.70	1.04	0.51	59.28	1.37
450GeV	30	381.16	29.96	1.00	0.49	66.53	1.45

Increasing the intensity

Increasing total number of protons per year onto the target

2 ways to increase the SPS intensity :

a) increase number of injection from CPS into SPS (2 \rightarrow 3)

b) increase intensity per injection from CPS.

b) is preferred (20 % less intensity than with a) but shorter cycle, and much easier operation).

ACHIEVED ULTIMATE • CPS 3 10¹³ p • CPS >3.5 10¹³ p • SPS 4.8 10¹³ p • SPS 7 10¹³ p

- CPS side : Booster injection energy into CPS : 1 to 1.4 GeV Reduced CPS M_h into SPS Equalize 4 booster ring intensities Electrostatic septum upgrade/replacement
- SPS side :Hardware limitation solved by LHC upgrade program
(RF system, damper system, impedance budget)
Heating of the ferrite of the kicker system

Requirements for Instrumentation

Mesure :

- Proton beam intensity to 1 %
- Proton beam position with an accuracy of 0.1 mm and beam angle with 0.1 mrad
- Beam loss monitors
- Right upstream of the target : intensity, positions, profiles
- Beam position and angle at target cycle to cycle

5/09/2000 M.Meddahi

M.Meddahi

STATUS

- Layout and concept of primary proton line
- vacuum
- magnet design
- extraction channel
- instrumentation

5/09/2000 M.Meddahi

. . .

lacksquare